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Abstract. The description of fermions on curved manifolds or in curvilinear coordinates usually requires a
vielbein formalism to define Dirac γ-matrices or Pauli matrices on the manifold. Derivatives of the vielbein
also enter equations of motion for fermions through the spin connection, which gauges local rotations or
Lorentz transformations of tangent planes. The present paper serves a dual purpose. First we will see
how the zweibein formalism on surfaces emerges from constraining fermions to submanifolds of Minkowski
space. However, it is known e.g. in superstring theory, that so called half-order differentials can also be
used to describe fermions in two dimensions. Therefore, in the second part, I will explain how in two
dimensions the zweibein can be absorbed into the spinors to form half-order differentials. The interesting
point about half-order differentials is that their derivative terms along a two-dimensional submanifold of
Minkoski space look exactly like ordinary spinor derivatives in Cartesian coordinates on a planar surface,
and the whole effect of the background geometry reduces to a universal factor multiplying orthogonal
derivative terms and mass terms.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
73.20.-r Electron states at surfaces and interfaces

1 Introduction

Low-dimensional electron systems play an important role
in the theoretical modeling of surfaces and interfaces in
condensed matter physics [1–3], and also for the descrip-
tion of quasi one-dimensional systems and quantum wires.
It is commonplace that interfaces are crucial for thermody-
namic, magnetic and conductivity properties of materials,
while the study of quasi one-dimensional systems is driven
by the desire to understand the properties of particular
materials with distinguished one-dimensional subsystems
and also teaches us important lessons on general magnetic
interactions in the more easily analyzed framework of spin
chains.

Advances in the theory of surface electrons include e.g.
investigations of their magnetic properties, exchange split-
ting, and spin polarization [4–6], ab initio calculations of
electronic surface structures [7,8], and calculations of dif-
ferent contributions to the width of surface states through
their interactions with phonons and bulk electrons, see
e.g. [9] and references there. Another particularly inter-
esting aspect of low-dimensional systems concerns the ap-
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pearance or co-existence of unusual phase structures, see
e.g. [10–12].

In a previous paper [13], I have pointed out that a
Hamiltonian with a linear combination of bulk and surface
terms can be used to describe the transition between two-
dimensional and three-dimensional behavior of fermion
correlations on surfaces or interfaces. This linear combina-
tion of bulk and surface Hamiltonians was motivated by
corresponding techniques developed in brane world mod-
els, see e.g. [14] and references there. The present paper
is motivated by the observation that fermionic degrees
of freedom on the world sheets of superstring theory
are naturally described in terms of half-order differen-
tials [15]. The major difference to low-dimensional sys-
tems in condensed matter physics is that the fermionic de-
grees of freedom of superstrings come without mass terms
on the world sheet, while low-dimensonional electrons or
fermionic quasi-particles have mass. Given the importance
of low-dimensional systems for electronics, nanotechnol-
ogy and materials science, it appears prudent to draw at-
tention to the possibility of a complementary description
of low-dimensional fermions.

Half-order differentials (or half-differentials, for short)
Ψ are defined through their characteristic transformation
behavior under coordinate changes. This transformation
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behavior is most easily expressed in terms of conformal or
isothermal coordinates z and z̄ on the surface [16],

z → z′(z), z̄ → z̄′(z̄),

Ψ√
z(z, z̄) → Ψ ′√

z(z
′, z̄′) = Ψ√

z(z, z̄)

√
dz

dz′
, (1)

Ψ√
z̄(z, z̄) → Ψ ′√

z
(z′, z̄′) = Ψ√

z(z, z̄)

√
dz̄

dz̄′
,

see Section 3 and the appendix for a more detailed expla-
nation and for the definition of conformal coordinates on
curved surfaces. In the language of two-dimensional con-
formal field theory, half-differentials are conformal fields of
conformal weights (1/2, 0) or (0, 1/2), respectively. Two-
dimensional conformal field theory is usually applied in
the theory of two-dimensional critical models, where the
conformal weights of the fields are part of the critical ex-
ponents of a specific model. One objective of the present
paper is to point out that “conformal fields” in two di-
mensions also appear naturally in the description of low-
dimensional systems, without being necessarily tied to
critical phenomena or conformal invariance. We will pro-
ceed through most of this paper using isothermal coor-
dinates, after introducing the proper notion of conformal
gauge for coordinates in Section 3. However, I would like
to emphasize that isothermal coordinates are convenient,
but not necessary for the definition of half-differentials in
terms of a factorized transformation law like (1) under
two-dimensional coordinate transformations. The covari-
ant generalization of equation (1) for arbitrary sets of co-
ordinates on surfaces was found in reference [15] and is
described in the appendix.

The name half-order differential seems to have been
coined by Hawley and Schiffer [16], and stems from their
geometric invariance property,

Ψ ′√
z(z

′, z̄′)
√
dz′ = Ψ√

z(z, z̄)
√
dz, (2)

Ψ ′√
z
(z′, z̄′)

√
dz̄′ = Ψ√

z̄(z, z̄)
√
dz̄.

In Sections 3 and 4 we will identify one-to-one mappings
between low-dimensional spinors and half-differentials.
The mappings are trivial in Cartesian coordinates on pla-
nar surfaces or static wires, but in general coordinate
systems or on curved surfaces, or on wires with time-
dependent shapes, the description of fermions in terms of
half-differentials is complementary to the use of spinors.
Since the connection between half-differentials and spinors
is tied to two dimensions, it works best for equilibrium
phenomena on surfaces or dynamical phenomena on wires.
However, it is instructive to see how the mapping affects
time derivatives for fermions on a surface, and therefore
we will retain the time derivative terms when performing
the transformation of the Lagrangian for surface electrons.

For the conventions concerning the counting of dimen-
sions, a “three-dimensional” spinor is a spinor in four-
dimensional Minkowski space, a “two-dimensional” spinor
is a spinor which may depend on two space-like coordi-
nates and time, and a “one-dimensional” spinor describes

motions of a fermion on a wire. The coordinates on a
space-like surface or a wire will be denoted by {ξ1, ξ2}
or w, respectively. In the case of fermions on a space-
like surface, the shorthand notation f(ξ, t) ≡ f(ξ1, ξ2, t)
is used.

For the outline of the paper, we will first consider
the reduction of three-dimensional bulk spinors to two-
dimensional spinors on surfaces in Section 2. The mapping
between two-dimensional spinors and half-differentials will
be established in Section 3. The corresponding mapping
for fermions on a wire is introduced in Section 4. Section 5
contains a brief comment on the existence of spinors and
half-differentials on two-dimensional manifolds, and Sec-
tion 6 explains the mapping between spinors and half-
differentials in the particular case of spherical surfaces.
Section 7 contains our conclusions. The generalization of
equation (1) and the general form of the mapping be-
tween low-dimensional spinors and half-differentials for
non-isothermal coordinates is given in the appendix.

2 Spinors on surfaces from spinors
in Minkowski space

A proper derivation of the connection between spinors and
half-differentials proceeds through the fully relativistic for-
mulation for fermions. This constitutes no extra cost for
our objective to discuss fermions on curved surfaces, since
even in an ordinary spinor formalism the discussion of
the curvature induced spin connection term on the sur-
face starts from the Dirac equation. The setting is a static
surface S in a flat ambient three-dimensional space. Our
restricted space-time arena for particles moving on S is
therefore S ×R, where R stands for the time t. The ambi-
ent four-dimensional Minkowski space is triangulated with
inertial coordinates x0 = ct and xi, 1 ≤ i ≤ 3, and local
coordinates on the surface S are denoted by ξa, 1 ≤ a ≤ 2.
Unit vectors along the coordinate axes in Minkowski space
are denoted by uµ, u0 ·u0 = 1, u2

i = 1. Greek indices µ, ν
from the middle of the alphabet take values 0 ≤ µ, ν ≤ 3
and refer to vectors and tensor components in an iner-
tial basis of four-dimensional Minkowski space. Greek in-
dices α, β, γ from the beginning of the alphabet take val-
ues 0 ≤ α, β, γ ≤ 2 and refer to a coordinate basis on the
generically curved three-dimensional space S ×R.

Embeddings of local coordinate patches Ξ of the static
surface S in Minkowski space are given by xi = xi(ξ1, ξ2).
The induced tangent vectors along the coordinate lines on
S × R are

ea(ξ) = ∂ax(ξ) =
3∑

i=1

ui∂ax
i(ξ), (3)

and the induced metric on the surface is

gab(ξ) = ea(ξ) · eb(ξ) = ∂ax(ξ) · ∂bx(ξ). (4)

Dual basis vectors in the tangent planes of S are

ea(ξ) =
2∑

b=1

gab(ξ)eb(ξ), gab(ξ) = ea(ξ) · eb(ξ).
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A projector of vectors onto the tangent space at the point
ξ on S is

P (ξ) =
2∑

a=1

ea(ξ) ⊗ ea(ξ). (5)

The Christoffel symbols on S
Γ a

bc(ξ) = ea(ξ) · ∂ceb(ξ), (6)
2∑

a=1

ea(ξ)Γ a
bc(ξ) = P (ξ) · ∂ceb(ξ),

define the covariant derivatives of a tangent vector

v(ξ) =
2∑

a=1

va(ξ)ea(ξ)

through the projection of the partial derivatives onto the
tangent spaces,

Dav(ξ) = P (ξ) · ∂av(ξ).

Local coordinates in a neighbourhood N containing the
surface coordinate patch Ξ are given by {ξ1, ξ2, ξ⊥}, and
we choose ξ⊥ = 0 on the surface (e.g. ξ⊥ = r − R on
a sphere of radius R). Locally the map {ξ1, ξ2, ξ⊥} ↔
{x1, x2, x3} is an isomorphism, and the dual basis vectors
on S can be written as

ea =
3∑

i=1

ui∂iξ
a

∣∣∣∣∣
ξ⊥=0

. (7)

We could go from equation (6) straight into discussions
of the Dirac equation on S × R, using standard vielbein
techniques for spinors on curved manifolds. But it is more
instructive to actually follow the emergence of the Dirac
equation on S × R from the Dirac equation in the ambi-
ent space, in a simple electron-surface interaction model.
This motivates the discussion of the Dirac equation on the
surface, and explains the emergence of the zweibein and
the spin connection on the surface. We therefore assume
that electrons are attracted to the surface S through a
potential

V (ξ⊥) = −eΦ(ξ⊥) = −WΘ(�− |ξ⊥|) (8)

with 0 < W < 2mc2,

γ0
(
i�c∂0 +WΘ(�− |ξ⊥|))ψ(x, t) (9)

+i�cγ · ∇ψ(x, t) −mc2ψ(x, t) = 0.

We assume W < 2mc2 to avoid pair creation at the po-
tential threshold, which is the source of the Klein paradox
(otherwise the potential would have to be treated as a dy-
namical field, which would at least partly decay due to pair
creation). For electrons of energy E < W , the potential
will imply an exponential fall off outside of the surface
over a bulk penetration length �c/

√
m2c4 − (W − E)2,

and eventually we can neglect bulk effects and gradients

orthogonal to S on length scales on the surface which are
large compared to the penetration length.

For the calculation of the induced Dirac operator and
γ matrices on S ×R, we note that in N

γ0∂0ψ(x, t) + γ · ∇ψ(x, t) = γ0∂0ψ(ξ, ξ⊥, t)

+
2∑

a=1

γ · (∇ξa)∂aψ(ξ, ξ⊥, t) + γ · (∇ξ⊥)∂⊥ψ(ξ, ξ⊥, t).

The induced Dirac operator on S ×R is therefore

γ0∂0 +
2∑

a=1

Γ a(ξ)∂a

with two-dimensional γ matrices

Γ a(ξ) =
3∑

i=1

γi∂iξ
a, 1 ≤ a ≤ 2, (10)

{Γ a(ξ), Γ b(ξ)} = −2
3∑

i,j=1

δij∂iξ
a · ∂jξ

b

= −2ea(ξ) · eb(ξ) = −2gab(ξ). (11)

Equation (10) provides us with a triplet of 4×4 γ matrices
{γ0, Γ 1(ξ), Γ 2(ξ)} on the curved three-dimensional space-
time S × R in terms of flat γ matrices of the ambient
bulk. The set {γ0, Γ 1(ξ), Γ 2(ξ)} of γ matrices must be
reducible, because every irreducible representation of the
three-dimensional Clifford algebra condition

{γα, γβ} = −2gαβ

employs only 2 × 2 matrices, and there are exactly two
equivalence classes of such matrices. The reduction is par-
ticularly easy to see with Dirac bases of flat γ matrices in
four and three space-time dimensions.

The Dirac basis of γ matrices in four-dimensional Min-
kowski space is

γ0 =
(

1 0
0−1

)
, γi =

(
0 σi

−σi 0

)
, 1 ≤ i ≤ 3. (12)

All the entries are 2 × 2 matrices, and the matrices σi

are the Pauli spin matrices. For representations of the
two different equivalence classes of γ matrices in three-
dimensional Minkowski space we can choose

γ0
I =

(
1 0
0 −1

)
, γ1

I =
(

0 1
−1 0

)
, γ2

I =
(

0 −i
−i 0

)
,

γ0
II =

(
1 0
0 −1

)
, γ1

II =
(

0 1
−1 0

)
, γ2

II =
(

0 i
i 0

)
. (13)

The reduction of the 4× 4 γ matrices γµ, 0 ≤ µ ≤ 2, with
respect to the three-dimensional γ matrices γµ

I,II is given
in terms of the spinor decomposition

ψD =

⎛
⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞
⎟⎠ =

⎛
⎜⎝
ψI,1

ψII,1

ψII,2

ψI,2

⎞
⎟⎠ . (14)
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This means that the pairs of fermion states which trans-
form irreducibly under Lorentz transformations of the tan-
gent space to the reduced space-time are the states which
are related by charge conjugation

ψD → ψD,c = iγ2ψ
∗
D,

i.e. the spin up electron mixes only with the spin up po-
sitron under Lorentz boosts of the three-dimensional tan-
gent space.

We can write the reduction of the four-dimensional
spinor representation with respect to spinor representa-
tions on the planes x3 = const. more conveniently with
the rotation matrix

M =

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎠ , (15)

M· γµ · M−1 =
(
γµ

I 0
0 γµ

II

)
, 0 ≤ µ ≤ 2,

and the orthogonal matrix γ3, which mixes the two irre-
ducible representations, becomes

M· γ3 · M−1 = γ1.

On the curved surface S, each tangent plane carries
the two equivalence classes of three-dimensional γ ma-
trices (13), and the two equivalence classes of fermions
correspond to the two different spin orientations with re-
spect to the normal on the tangent plane. A normal com-
ponent A⊥ of the vector potential apparently couples the
two equivalence classes.

On the other hand, if we would not have used the em-
bedding of S × R in the ambient four-dimensional Min-
kowski space and the ensuing induced Dirac operator, we
would have employed a zweibein formalism for the met-
ric gab(ξ) to construct γ matrices on S in terms of flat
two-dimensional γ matrices,

gab(ξ) =
2∑

i=1

ea
i(ξ)ebi(ξ), (16)

γa(ξ) =
2∑

i=1

ea
i(ξ)γi. (17)

We can make the connection between the pair of induced
4 × 4 γ matrices {Γ 1(ξ), Γ 2(ξ)} from equation (10), and
the zweibein construction (17) on S by gauging away the
γ3 term in (10). This can be achieved through a rotation
R of the tangent plane to S into the (u1,u2)-plane. The
tangent plane is spanned by e1 and e2, and therefore we
can construct the rotation by introducing the Cartesian
vectors

n1 =
e1

|e1| ,

n2 =
e2 − (n1 · e2)n1√

e2
2 − (n1 · e2)2

=
e2
1e2 − (e1 · e2)e1√

e2
1[e2

1e
2
2 − (e1 · e2)2]

,

n⊥ = n1 × n2 =
e1 × e2√

e2
1e

2
2 − (e1 · e2)2

.

The rotation matrix is then given by

R(ξ) =

⎛
⎝nT

1

nT
2

nT
⊥

⎞
⎠ . (18)

The corresponding spinor representation

U(ξ) = U(R(ξ)) (19)

of the rotation will gauge away the γ3 term in the γ ma-
trices Γ a(ξ),

γa(ξ) = U(ξ) · Γ a(ξ) · U−1(ξ) (20)

=
2∑

i=1

ea
i(ξ)γ

i.

The Clifford algebra property

{γa(ξ), γb(ξ)} = −2gab(ξ) (21)

is also satisfied by the transformed γ matrices. We denote
the resulting spinor components after the transformation
with complex indices,

U · ψD ≡ ψ =

⎛
⎜⎜⎝
ψ
√

z̄

χ
√

z

χ
√

z̄

ψ
√

z

⎞
⎟⎟⎠ . (22)

The motivation for this designation will become apparent
in equation (30) below.

Replacing ψD with U−1 ·ψ in the induced Dirac equa-
tion on S × R will yield extra derivative terms ∂aU−1,
which correspond to the spin connection terms discussed
below.

The Clifford algebra relations (21) and {γi, γj} =
−2δij imply the zweibein property (16).

The spinor representation of rotations of tangent
planes of S is given in terms of the generator

S12 =
i

2
γ1 · γ2 =

1
2

(
σ3 0
0 σ3

)
. (23)

and the zweibein components (17) can be used in the stan-
dard way to convert the Christoffel symbols into a spin
connection to gauge local rotations of the tangent planes.

In the present setting of S×R, we keep the inertial time
coordinate fixed and also do not perform boosts or time-
dependent rotations in the three-dimensional Minkowski
spaces tangent to S×R. The spin connection then has only
2 independent coefficients due to e00 = 1, e0i = ea

0 = 0,

Γ 1
2c = e1a(∂ce

a
2 + Γ a

bce
b
2) = e1 · ∂ce2 = −Γ 1

2 c, (24)

and the spin connection is given by

Ωc(ξ) = iΓ12c(ξ)S12 = −1
2
Γ12c(ξ)γ1 · γ2. (25)
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It gauges local rotations of the tangent planes of S,

R(ξ) = exp[iϕ(ξ)L12] =
(

cosϕ(ξ) sinϕ(ξ)
− sinϕ(ξ) cosϕ(ξ)

)

U(ξ) = exp[iϕ(ξ)S12] = exp
[
i

2
ϕ(ξ)

(
σ3 0
0 σ3

)]
,

e′ai(ξ) =
2∑

j=1

Ri
j(ξ)ea

j(ξ),

ψ′(ξ, t) = U(ξ) · ψ(ξ, t), ψ
′
(ξ, t) = ψ(ξ, t) · U−1(ξ),

because the spin connection transforms according to

Ω′
a(ξ) = U(ξ) ·Ωa(ξ) · U−1(ξ) + U(ξ) · ∂aU

−1(ξ).

The corresponding covariant derivatives are

Daψ(ξ, t) = ∂aψ(ξ, t) +Ωa(ξ) · ψ(ξ, t), (26)

Daψ(ξ, t) = ∂aψ(ξ, t) − ψ(ξ, t) ·Ωa(ξ).

It is well-known that the spin connection on a surface does
not appear in the fermion action if the derivative terms are
split symmetrically between ψ and ψ, see equation (31)
below. This is due to the fact that the two-dimensional
spin connection (25) anti-commutes both with γ1 and γ2,

{Ωa, γ
i} = 0, 1 ≤ i ≤ 2.

Of course, the spin connection re-appears in the equations
of motion through the derivatives of the zweibein if we
insist on the use of spinors for the fermion wave functions.
However, the zweibein and the spinor wave functions can
be combined to form half-order differentials on S, and this
will eliminate the spin connection on S from the equations
of motion.

3 Fermions and half-differentials on surfaces

It is not necessary, but very convenient for the discussion
of half-differentials to choose the parameters ξa on the
surface S in such a way that the induced metric (4) on S
is conformally flat,

gab(ξ) = exp [2φ(ξ)] δab, ea
i(ξ) = exp [φ(ξ)]Ra

i(ξ), (27)

where Ra
i(ξ) can be an arbitrary local rotation matrix. If

we start with arbitrary parameters ξ(0)a on the surface,
the requirement to find new parameters ξa which satisfy
the conformal gauge condition (27) amounts to two cou-
pled second order differential equations which can always
be solved. Modern proofs usually proceed by demonstrat-
ing convergence of the iterative solution of the conformal
gauge conditions through Green’s functions [17–19]. The
gauge (27) is known as conformal gauge, and the corre-
sponding parameters ξa are denoted as isothermal or con-
formal coordinates. In complex conformal coordinates

z = ξ1 + iξ2

the gauge conditions (27) read

gzz(z, z̄) = 0, gzz̄(z, z̄) =
1
2

exp [2φ(z, z̄)] =
1
2
√
g.

We also introduce a corresponding complex notation for
the non-holonomic index i of the zweibein, such that e.g.
(note δzz̄ = 1/2)

e z
z = e 1

z + ie 2
z =

1
2
e 1
1 − 1

2
ie 1

2 +
1
2
ie1

2 +
1
2
e 2
2

= exp(φ− iα),
ez̄

z̄ = exp(φ+ iα), e z̄
z = e z

z̄ = 0,

ezz̄ = e∗z̄z =
1
2

exp(φ− iα), ezz = ez̄z̄ = 0, (28)

ez
z = ez̄

z̄
∗ = exp(−φ+ iα), ez

z̄ = ez̄
z = 0.

The functions φ and α are time-independent for our static
surface S. The arbitrary local phase α(ξ) is the remnant of
the local rotation matrix Ra

i(ξ) in equation (27). Please
keep in mind that the first index of a zweibein is always
a coordinate index which transforms in a vector represen-
tation under coordinate transformations on the surface S,
while the second index is a tangent plane index which
transforms under rotations of the tangent plane.

Under rotations of the tangent plane, the complex
components of a tangent vector v transform according to

v′z = exp(−iϕ)vz (29)

while the components of the spinor (14) transform accord-
ing to

ψ′√z̄ = exp
(
i

2
ϕ

)
ψ
√

z̄, ψ′√z = exp
(
− i

2
ϕ

)
ψ
√

z, (30)

χ′√z = exp
(
− i

2
ϕ

)
χ
√

z , χ′√z̄ = exp
(
i

2
ϕ

)
χ
√

z̄.

This explains our assignment of complex indices in equa-
tion (22). (ψ

√
z)2 transforms like a tangent vector vz under

tangent plane rotations.
The Lagrange density for fermions with charge q on a

curved space-time with metric

Gµν = Eµ
mEν

nηmn

is

L =
1
2

√−GEµ
m

[
i�

(
ψ ·Ωµ − ∂µψ

) · γm · ψ
+ i�ψ · γm · (∂µψ +Ωµ · ψ) + 2qψ · γmAµ · ψ]
−mc

√−Gψψ.

In the present case this reduces to

L = gzz̄

[
i�

(
ψ · γ0 · ∂0ψ − ∂0ψ · γ0 · ψ)

+ 2qψ · γ0A0 · ψ
+ i�ez

z

(
ψ · γz · ∂zψ − ∂zψ · γz · ψ)

+2qez
zψ · γzAz · ψ

+ i�ez̄
z̄

(
ψ · γ z̄ · ∂z̄ψ − ∂z̄ψ · γ z̄ · ψ)

+2qez̄
z̄ψ · γ z̄Az̄ · ψ

− 2mcψψ
]

= −2iLzz̄. (31)
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The extraction of the factor −2i in the definition of Lzz̄

is due to
dξ1dξ2 =

i

2
dzdz̄,

so that the Lagrangian is

L =
∫
dξ1dξ2 L =

∫
dzdz̄ Lzz̄ .

The γ matrices with complex tangent space indices are

γz = γ1 + iγ2 =
(

0 σ+

−σ+ 0

)
, (32)

γ z̄ = γ1 − iγ2 =
(

0 σ−
−σ− 0

)
.

We should amend the action (31) with the mixing term

∆L = 2qgzz̄ψ · γ3A⊥ · ψ (33)

because S×R is embedded in four-dimensional Minkowski
space.

In the next step, we insert equations (22, 32) and the
adjoint spinor

ψ = ψ+γ0 =
(
ψ∗√z, χ∗√z̄,−χ∗√z,−ψ∗√z̄

)
(34)

into the sum of equations (31) and (33) to find

Lzz̄ = gzz̄

[
�

2

(
∂0ψ

∗√z · ψ
√

z̄ − ψ∗√z · ∂0ψ
√

z̄ (35)

+∂0χ
∗√z̄ · χ

√
z − χ∗√z̄ · ∂0χ

√
z + ∂0χ

∗√z · χ
√

z̄

− χ∗√z · ∂0χ
√

z̄ + ∂0ψ
∗√z̄ · ψ

√
z − ψ∗√z̄ · ∂0ψ

√
z
)

+iqA0

(
ψ∗√z · ψ

√
z̄ + χ∗√z̄ · χ

√
z + χ∗√z · χ

√
z̄

+ ψ∗√z̄ · ψ
√

z
)

+ iqA⊥
(
ψ∗√z · χ

√
z̄ − χ∗√z̄ · ψ

√
z

+ χ∗√z · ψ
√

z̄ − ψ∗√z̄ · χ
√

z
)
− imc

(
ψ∗√z · ψ

√
z̄

+ χ∗√z̄ · χ
√

z − χ∗√z · χ
√

z̄ − ψ∗√z̄ · ψ
√

z
) ]

+ez̄z

[
�

(
∂zψ

∗√z · ψ
√

z + ∂zχ
∗√z · χ

√
z

− ψ∗√z · ∂zψ
√

z − χ∗√z · ∂zχ
√

z
)

+2iqAz

(
ψ∗√z · ψ

√
z + χ∗√z · χ

√
z
) ]

+ezz̄

[
�

(
∂z̄ψ

∗√z̄ · ψ
√

z̄ + ∂z̄χ
∗√z̄ · χ

√
z̄

− ψ∗√z̄ · ∂z̄ψ
√

z̄ − χ∗√z̄ · ∂z̄χ
√

z̄
)

+2iqAz̄

(
ψ∗√z̄ · ψ

√
z̄ + χ∗√z̄ · χ

√
z̄
) ]
.

This is an unwieldy looking equation, but we can combine
the spinor and zweibein components into half-differentials

Ψ√
z =

√
ezz̄ψ

√
z̄, Ψ√

z̄ =
√
ez̄zψ

√
z, (36)

Υ√z =
√
ezz̄χ

√
z̄, Υ√z̄ =

√
ez̄zχ

√
z,

because the derivatives of the zweibein components will
cancel in the alternating derivative terms in (35). Note
that the spinor components are invariant under coordi-
nate transformations, but transform under tangent plane
rotations. The half-differentials, on the other hand, are
invariant under tangent plane rotations and transform ac-
cording to equation (1) under conformal gauge preserving
coordinate transformations.

We also use the equation

gzz̄ = 2ezz̄ez̄z.

The Lagrange density written in terms of the half-
differentials (36),

Lzz̄ = Lzz̄,⊥ + Lzz̄,m + Lzz̄,‖, (37)

contains a single factor
√
ezz̄ez̄z as a reminder of the back-

ground geometry in the orthogonal derivative and poten-
tial terms

Lzz̄,⊥ =
√
ezz̄ez̄z

[
�

(
∂0Ψ

∗√
z̄
· Ψ√

z − Ψ∗√
z̄
· ∂0Ψ√

z

+∂0Υ
∗√

z · Υ√z̄ − Υ ∗√
z · ∂0Υ√z̄ + ∂0Υ

∗√
z̄
· Υ√z

− Υ ∗√
z̄
· ∂0Υ√z + ∂0Ψ

∗√
z · Ψ√

z̄ − Ψ∗√
z · ∂0Ψ√

z̄

)

+2iqA0

(
Ψ∗√

z̄
· Ψ√

z + Υ ∗√
z · Υ√z̄ + Υ ∗√

z̄
· Υ√z

+ Ψ∗√
z · Ψ√

z̄

)
+ 2iqA⊥

(
Ψ∗√

z̄
· Υ√z − Υ ∗√

z · Ψ√
z̄

+ Υ ∗√
z̄
· Ψ√

z − Ψ∗√
z · Υ√z̄

) ]
(38)

and in the mass term

Lzz̄,m = 2imc
√
ezz̄ez̄z

(
Ψ∗√

z · Ψ√
z̄

− Ψ∗√
z̄
· Ψ√

z + Υ ∗√
z̄
· Υ√z − Υ ∗√

z · Υ√z̄

)
, (39)

but the derivative and potential terms in the surface look
exactly like an action for a spinor on a flat plane,

Lzz̄,‖ = �

(
∂zΨ

∗√
z̄
· Ψ√

z̄ + ∂zΥ
∗√

z̄
· Υ√z̄

− Ψ∗√
z̄
· ∂zΨ√

z̄ − Υ ∗√
z̄
· ∂zΥ√z̄

)

+ 2iqAz

(
Ψ∗√

z̄
· Ψ√

z̄ + Υ ∗√
z̄
· Υ√z̄

)

+ �

(
∂z̄Ψ

∗√
z · Ψ√

z + ∂z̄Υ
∗√

z · Υ√z − Ψ∗√
z · ∂z̄Ψ√

z

− Υ ∗√
z · ∂z̄Υ√z

)
+2iqAz̄

(
Ψ∗√

z · Ψ√
z+Υ ∗√

z · Υ√z

)
.

(40)

Naively, in a gauge α(z, z̄) = 0, one could think of the
mapping (36) as a scale transformation between spinors,
but that interpretation is actually not correct. The map-
ping between spinors and half-differentials is a mapping
between entities with different geometric transformation
properties. It is important to keep this in mind, because
only then does it become clear that the field Ψ√

z̄ and its
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companions are fields with half-integer conformal weight
in the parlance of two-dimensional conformal field theory,
and that the resulting action S is invariant under coordi-
nate transformations z → z′(z). Please also note that the
mapping (36) is even relevant in the seemingly trivial case
of a planar surface. It is only hidden if one uses Cartesian
coordinates on the plane, but as soon as conformal coor-
dinate transformations z → z′(z) are introduced, it again
provides the link between the spinor and conformal field
description of two-dimensional fermions.

The virtue of equation (36) is to provide an explicit
connection between actual fermionic degrees of freedom
on space-like surfaces and the corresponding notions used
in two-dimensional conformal field theory. Please note
that equations (37–40) really go beyond two-dimensional
conformal field theory through the inclusion of the time
derivative and orthogonal potential terms, and through
the inclusion of the geometry factor with the mass term.
A mass term is often included in two-dimensional models
studied in conformal field theory, to discuss properties off
but close to criticality, see e.g. Section 2.3 in [20]. A glance
at equations (39, 40) shows that with the half-differential
interpretation of the fields, all that is required to formulate
the non-critical Ising model on a curved surface is inclu-
sion of the background geometry factor

√
ezz̄ez̄z. In gen-

eral, equations (37–40) tell us that in the half-differential
formalism for low-dimensional fermions, the impact of
the background geometry reduces to the presence of the
(1/2, 1/2) differential

√
ezz̄ez̄z in the mass term and or-

thogonal derivative terms1.
In the absence of the mass and potential terms we

would only be left with the longitudinal derivative terms
Lzz̄,‖ and the half-differentials would satisfy the usual
(anti-)meromorphy constraints of massless free fermionic
fields in two dimensions. We could then employ standard
elementary bosonization formulae like Ψ√

zΥ
√

z ∼ ∂zφ to
express operators in terms of free massless boson operators
or their vertex operators. This also shows that fermionic
Ising fields should naturally be interpreted as half-diffe-
rentials, rather than as spinors. Furthermore, there ex-
ist many variants of bosonization prescriptions for various
low-dimensional systems, and in some of those the expo-
nent of vertex operators is actually chosen to keep the
vertex operator bosonic, while the anti-commutation rela-
tions are encoded in classical fermionic factors. This has an
interesting resemblance with equation (36). Upon quanti-
zation, conventionally one would consider the spinor fields
ψ, χ and the equivalent fermionic half-differentials Ψ , Υ as
quantum fields, and the zweibein components as classical
background fields. However, if one quantizes the complex
field

ezz̄ =
1
2

exp(φ− iα),

1 Please keep in mind that only the first index of a zweibein
transforms under coordinate transformations, while the second
index transforms under rotations of tangent planes. This makes√

ezz̄ez̄z a (1/2, 1/2) differential under coordinate transforma-
tions.

e.g. in a variant of two-dimensional dilaton gravity, then
the mapping (36) with Ψ , Υ as classical fields (or the in-
verse mapping with ψ, χ as classical fields) could be con-
sidered as a bosonization equation, if the kinetic term of
the complex scalar φ − iα is normalized to give the cor-
rect conformal weight to the vertex operator

√
ezz̄. In that

sense, the mapping (36) could provide a geometric picture
for a class of bosonization models.

4 Fermions on a wire

We now reduce the number of dimensions further by con-
sidering fermions moving in one space-like dimension —
a wire. However, we treat this problem in more general-
ity than electrons confined to a static space-like surface
by allowing the form of the wire to change with time. The
embedding of the wire in the ambient flat Minkowski space
therefore has the form w → xi(w, t), 1 ≤ i ≤ 3, where w
is a coordinate along the wire.

Now our two-dimensional manifold carrying the half-
differentials is the world sheet W traced out by the wire
as it moves through space-time. The induced metric on W
has local components

g00 =−1 + (∂0x(w, t))2,
g0w = ∂0x(w, t) · ∂wx(w, t), gww = (∂wx(w, t))2.

It is very convenient to change coordinates t, w → τ, σ on
W such that the conformal gauge conditions

gττ + gσσ = 0, gτσ = 0

are satisfied. For surfaces with Minkowski signature the
proof that conformal gauge can be achieved proceeds by
covering the coordinate neighborhoods on W with charac-
teristics of the gauge conditions [21]. The characteristics
correspond to the new coordinate lines. Note that for a
static wire only a local rescaling of w would be needed.

As in the previous case of S, switching to conformal
gauge is not necessary, because the covariant conformal
field formalism described in the appendix also works on
surfaces with Minkowski signature. But the equations are
much nicer in conformal gauge.

We denote the remaining degree of freedom in the met-
ric after conformal gauge fixing by φ(τ, σ),

gσσ = −gττ = exp(2φ).

The metric in the corresponding two-dimensional light
cone coordinates

ξ± = σ ± τ, ∂± =
1
2
(∂σ ± ∂τ )

is

g++ = g−− = 0, g+− =
1
2

exp(2φ) =
1
2
√−g.

This corresponds to zweibein components eα
a (note η+− =

1/2),

e+
+ = exp(φ− u), e−− = exp(φ + u),

e+
− = e−+ = 0.
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We will also quote the components with different index
positions for reference in the calculation of the spinor
Lagrangian on the wire,

e++ = exp(−φ+ u), e−− = exp(−φ− u),
e+− = e−+ = 0,

e+− =
1
2

exp(φ− u), e−+ =
1
2

exp(φ+ u),

e++ = e−− = 0.

The first index of the zweibein is always a world sheet
index which transforms under coordinate transformations
on the world sheet. The second index is a tangent plane
index which transforms under Lorentz boosts of the tan-
gent plane. Note that the set of orientation preserving
coordinate transformations is restricted to

ξ+ → ξ′+(ξ+), ξ− → ξ′−(ξ−),

because we exclusively work in conformal gauge. The ar-
bitrary local parameter u(ξ+, ξ−) is a consequence of the
possibility to perform local Lorentz boosts in the tangent
planes to the world sheet of the wire.

Next we consider a boost with parameter

u = artanh(β) =
1
2

ln
(

1 + β

1 − β

)

in the tangent plane at the point with coordinates ξ =
(τ, σ). This transforms a tangent space vector va(ξ) in the
standard way,

v′0 =
v0 − βv1√

1 − β2
, v′1 =

v1 − βv0√
1 − β2

,

or in a light cone basis v± = v1 ± v0 in the tangent plane:

(
v′+
v′−

)
=

⎛
⎜⎝

(
1−β
1+β

)1/2

0

0
(

1+β
1−β

)1/2

⎞
⎟⎠

(
v+

v−

)
. (41)

In the light cone basis of the tangent plane, the only non-
vanishing components of the boost matrix in the vector
representation are

Λ+
+ = exp(−u) =

(
1 − β

1 + β

)1/2

,

Λ−− = exp(u) =
(

1 + β

1 − β

)1/2

.

This is similar to the transformation of spinor components
in the tangent plane. We use a Weyl basis of γ matrices
in the tangent planes of W ,

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 1

−1 0

)
. (42)

The spinor representation of the boost generator

S10 =
i

2
γ1γ0 =

i

2

(
1 0
0 −1

)

yields the spinor transformation law
(
ψ′√+

ψ′√−

)
= exp(iuS10) ·

(
ψ
√

+

ψ
√−

)
(43)

= exp
[
−u

2

(
1 0
0−1

)] (
ψ
√

+

ψ
√−

)

=
(

exp(−u/2) 0
0 exp(u/2)

) (
ψ
√

+

ψ
√−

)

=

⎛
⎜⎝

(
1−β
1+β

)1/4

0

0
(

1+β
1−β

)1/4

⎞
⎟⎠

(
ψ
√

+

ψ
√−

)
.

The fact that two-dimensional spinors transform with the
square root of the vector representation of the Lorentz
boost motivated our assignment of indices to the com-
ponents of the two-dimensional Dirac spinor in the Weyl
basis. (ψ

√
+)2 and (ψ

√−)2 transform like the components
of a tangent vector in a light cone basis.

To write down the fermion action on the wire, we need
to write a few more quantities in light cone coordinates on
the world sheet, or light cone bases for the tangent planes,
respectively. The flat tangent plane gamma matrices in the
light cone basis are

γ+ = γ1 + γ0 = −
(

0 0
2 0

)
, (44)

γ− = γ1 − γ0 =
(

0 2
0 0

)
,

and the transformation of the integration measure to the
light cone coordinates on the world sheet is

dτdσ =
1
2
dξ+dξ−, dτdσ

√−g = dξ+dξ−g+−.

As in the previous case of fermions on a space-like surface,
the spin connection

Ωα = −iΓ 0
1αS

1
0 =

1
2
Γ 0

1αγ
1γ0,

anti-commutes both with γ0 and γ1 and will not appear in
the Dirac action if we split the derivatives symmetrically
between ψ and ψ.

The resulting action for spinors on the world sheet of
the wire is

S =
1
2

∫
dτdσ

√−g [
i�eα

a

(
ψ · γa · ∂αψ (45)

− ∂αψ · γa · ψ) − 2mcψ · ψ]
=

1
2

∫
dξ+dξ−g+−

[
i�e++

(
ψ · γ+ · ∂+ψ − ∂+ψ · γ+ · ψ)

+i�e−−
(
ψ · γ− · ∂−ψ − ∂−ψ · γ− · ψ) − 2mcψ · ψ]

.

In the next step we insert the components of the two-
dimensional Dirac spinor

ψ =
(
ψ
√

+

ψ
√−

)
, ψ = (−ψ

√−,∗,−ψ
√

+,∗)
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and the γ-matrices (44),

S =
∫
dξ+dξ−

[
i�e−+

(
ψ
√

+,∗ · ∂+ψ
√

+ − ∂+ψ
√

+,∗ · ψ
√

+
)

−i�e+−
(
ψ
√−,∗ · ∂−ψ

√− − ∂−ψ
√−,∗ · ψ

√−
)

+ 2mce−+e+−
(
ψ
√−,∗ψ

√
+ + ψ

√
+,∗ψ

√−
)]
.

This can be rearranged as

S =
∫
dξ+dξ−

[
i�
√
e−+ψ

√
+,∗ · ∂+

(√
e−+ψ

√
+
)

−i�∂+

(√
e−+ψ

√
+,∗

)
· √e−+ψ

√
+

−i�√e+−ψ
√−,∗ · ∂−

(√
e+−ψ

√−
)

+ i�∂−
(√

e+−ψ
√−,∗

)
· √e+−ψ

√−
]

+ 2mce−+e+−
(
ψ
√−,∗ψ

√
+ + ψ

√
+,∗ψ

√−
)]

=
∫
dξ+dξ−

[
i�

(
Ψ∗√−∂+Ψ√− − ∂+Ψ

∗√− · Ψ√−

− Ψ∗√
+∂−Ψ

√
+ + ∂−Ψ∗√

+ · Ψ√
+

)

+ 2mc
√
e−+e+−

(
Ψ∗√

+Ψ
√− + Ψ∗√−Ψ

√
+

)]
. (46)

The metric has completely disappeared in the kinetic
terms, due to absorption into the half-differentials

Ψ√− =
√
e−+ψ

√
+, Ψ√

+ =
√
e+−ψ

√−. (47)

The spinors are invariant under coordinate transforma-
tions on the world sheet, and transform under Lorentz
transformations in the tangent plane according to

ψ
√

+(ξ+, ξ−)→ψ′√+(ξ+, ξ−) =
(
Λ+

+

)1/2
ψ
√

+(ξ+, ξ−),

ψ
√−(ξ+, ξ−)→ψ′√−(ξ+, ξ−) =

(
Λ−−

)1/2
ψ
√−(ξ+, ξ−).

The half-differentials Ψ are invariant under Lorentz trans-
formations of the tangent plane, but transform under
world sheet coordinate transformations

ξ+ → ξ′+(ξ+), ξ− → ξ′−(ξ−)

according to

Ψ√−(ξ+, ξ−)→ Ψ ′√−(ξ′+, ξ′−) = Ψ√−(ξ+, ξ−)

√
∂ξ−

∂ξ′−
,

Ψ√
+(ξ+, ξ−)→ Ψ ′√

+(ξ′+, ξ′−) = Ψ√
+(ξ+, ξ−)

√
∂ξ+

∂ξ′+
.

The action after inclusion of the gauge potentials is

S =
∫
dξ+dξ−

[
2mc

√
e−+e+−

(
Ψ∗√

+Ψ
√− + Ψ∗√−Ψ

√
+

)

+i�Ψ∗√−∂+Ψ√− − i�∂+Ψ
∗√− · Ψ√− + 2qΨ∗√−A+Ψ√−

− i�Ψ∗√
+∂−Ψ

√
+ + i�∂−Ψ∗√

+ · Ψ√
+ − 2qΨ∗√

+A−Ψ√
+

]
.

Again, the virtue of the equation is to reduce the ef-
fect of the background geometry to one universal factor√
e−+e+− in orthogonal derivative terms and mass terms.

5 Existence of spinors and half-differentials
in two dimensions

Equations (29, 30) and (41, 43) illustrate the general 2–1
correspondence between vector and spinor representations
of rotations and Lorentz transformations in the particular
setting of two-dimensional spaces2.

For a general manifold M of dimension d, the 2–1
correspondence can cause problems with the construction
of minimal (i.e. 2[d/2]-dimensional) spinor fields [22,23],
because for every intersection Ci ∩ Cj 	= ∅ of coordinate
patches on M we have to assign spinor transition matri-
ces Uij = U−1

ji , which for every intersection Ci∩Cj∩Ck 	= ∅
have to satisfy the consistency condition

UjkUkiUij = 1. (48)

Since the consistency condition is fulfilled for vectors and
Λ = U2(Λ), the two possibilities are

UjkUkiUij = ±1

and the question is whether the signs of all the spinor
transition matrices can be assigned in such a way that the
condition (48) is satisfied.

It is clear from the correspondences (36) and (47), that
in two dimensions we will have an equivalent topological
obstruction for the existence of half-differentials. For half-
differentials we have to resolve the sign ambiguity of the
square roots (∂zi/∂zj)1/2 or (∂ξ±i /∂ξ

±
j )1/2 for all inter-

sections Ci ∩ Cj 	= ∅ in such a way that in all intersections
Ci ∩ Cj ∩ Ck 	= ∅ the consistency conditions

√
∂zk

∂zj

√
∂zi

∂zk

√
∂zj

∂zi
= 1 (49)

or √
∂ξ±k
∂ξ±j

√
∂ξ±i
∂ξ±k

√
∂ξ±j
∂ξ±i

= 1

are fulfilled. Both (48) and (49) amount to the same prob-
lem in Čech cohomology, which is concerned with the as-
signment of signs to intersections of coordinate patches. In
their investigations of half-order differentials, Hawley and
Schiffer have noticed that the second cohomology group
H2(M, Z2) is trivial on orientable two-dimensional man-
ifolds M [16]. In plain language, the sign ambiguities of
transition functions of spinors or half-differentials can al-
ways be resolved in these cases.

2 In two dimensions the correspondence takes the particu-
larly simple form Λ = U2(Λ), because all irreducible repre-
sentations of the abelian groups SO(2) and SO(1, 1) are one-
dimensional. Therefore both the two-dimensional vector and
spinor representations have to split into one-dimensional rep-
resentations, and there can be no further intertwining factors
in the correspondence for the reduced representations.
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6 An example: spinors and half-differentials
on a sphere

The constraints (48) or (49) are void in this case, because
the sphere can be covered by only two sets of coordinates.

The coordinate singularities of polar coordinates at the
poles are no particular concern for us in illustrating how
the map from spinors to half-differentials works. But the
conscientious reader can easily transform the results e.g.
into stereographic coordinates.

In polar coordinates, the general zweibein on a sphere
of radius r

eϑ
1 =

1
r

cosα, eϑ
2 =

1
r

sinα, (50)

eϕ
1 =− sinα

r sinϑ
, eϕ

2 =
cosα
r sinϑ

,

yields two different equivalence classes of local γ matrices
through expansion in the basis (13)

γϑ
± =

1
r

(
0 exp(∓iα)

− exp(±iα) 0

)
, (51)

γϕ
± =

1
r sinϑ

(
0 ∓i exp(∓iα)

∓i exp(±iα) 0

)
.

The gauge degree of freedom α ≡ α(ϑ, ϕ) arises from the
possibility to locally rotate the zweibein in every tangent
plane.

For comparison, the induced γ matrices on the sphere
from its embedding are

Γϑ =
3∑

i=1

γi∂iϑ =
(

0 σϑ

−σϑ 0

)
, Γϕ =

(
0 σϕ

−σϕ 0

)
,

with the Pauli matrices on the sphere

σϑ =
1
r

( − sinϑ exp(−iϕ) cosϑ
exp(iϕ) cosϑ sinϑ

)

σϕ =
1

r sinϑ

(
0 −i exp(−iϕ)

i exp(iϕ) 0

)
.

The rotation matrix (18) which locally maps the normal
vector to u3 is

R(ϑ, ϕ) =

⎛
⎝cosϑ cosϕ cosϑ sinϕ − sinϑ

− sinϕ cosϕ 0
sinϑ cosϕ sinϑ sinϕ cosϑ

⎞
⎠

= exp(iϑL2) · exp(iϕL3) ,

with the standard so(3) generators in vector representa-
tion (Li)jk = −iεijk.

The spin representation matrices

Si =
i

4

3∑
j,k=1

εijkγjγk =
1
2

(
σi 0
0 σi

)

yield the corresponding spinor rotation matrix

U(ϑ, ϕ) = exp(iϑS2) · exp(iϕS3) =
(A(ϑ, ϕ) 0

0 A(ϑ, ϕ)

)

with

A(ϑ, ϕ) = exp
(
i

2
ϑσ2

)
exp

(
i

2
ϕσ3

)

=
(

cos(ϑ/2) exp(iϕ/2) sin(ϑ/2) exp(−iϕ/2)
− sin(ϑ/2) exp(iϕ/2) cos(ϑ/2) exp(−iϕ/2)

)
.

We also need the inverse matrix

A−1 =
(

cos(ϑ/2) exp(−iϕ/2) − sin(ϑ/2) exp(−iϕ/2)
sin(ϑ/2) exp(iϕ/2) cos(ϑ/2) exp(iϕ/2)

)

for the transformation of the induced γ matrices on the
sphere. The transformed induced γ matrices on the sphere
are

γϑ = U · Γϑ · U−1 =
(

0 A · σϑ · A−1

−A · σϑ · A−1 0

)

=
1
r

(
0 σ1

−σ1 0

)
,

γϕ = U · Γϕ · U−1 =
(

0 A · σϕ · A−1

−A · σϕ · A−1 0

)

=
1

r sinϑ

(
0 σ2

−σ2 0

)
.

This corresponds to the gauge α = 0 for the zweibein (50)
on the sphere, and the reduction of the induced γ matrices
in terms of the inequivalent bases of irreducible matrices
is again conveniently expressed with the matrix (15),

M· γϑ ·M−1 =
(
γϑ
+ 0
0 γϑ−

)
, M· γϕ · M−1 =

(
γϕ
+ 0
0 γϕ

−

)
.

For the mapping of the spinors to half-differentials on the
sphere, we could use the covariantized conformal field for-
malism from the appendix. However, in agreement with
the development in the previous sections, we will first
switch to conformal gauge.

The conformal gauge conditions on the sphere

sin2 ϑ(∂ϑξ
1)2 + (∂ϕξ

1)2 = sin2 ϑ(∂ϑξ
2)2 + (∂ϕξ

2)2,

sin2 ϑ∂ϑξ
1 · ∂ϑξ

2 + ∂ϕξ
1 · ∂ϕξ

2 = 0

can easily be solved through

ξ1 = ln tan(ϑ/2), ξ2 = ϕ,

i.e. we have
z = ln tan(ϑ/2) + iϕ

and

gzz̄ =
1
2
r2 sin2 ϑ = 2r2

exp(z + z̄)
[1 + exp(z + z̄)]2

.

Up to a phase, the non-vanishing components of the
zweibein are

ezz̄ = ez̄z
∗ =

1
2
r sinϑ =

r

1 + exp(z + z̄)
exp

(
z + z̄

2

)
.
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In the basis, where the γ3 components were gauged away
in the induced γ matrices on the sphere, a spinor has com-
ponents (cf. (28))

ψ =

⎛
⎜⎜⎝
ψ
√

z̄

χ
√

z

χ
√

z̄

ψ
√

z

⎞
⎟⎟⎠ = U · ψD = U ·

⎛
⎜⎝
ψI,1

ψII,1

ψII,2

ψI,2

⎞
⎟⎠ ,

and e.g. two of the four resulting half-differentials on the
sphere are (cf. (36))

Ψ√
z =

(
r

1 + exp(z + z̄)

)1/2

exp
(
z + z̄

4

)
ψ
√

z̄,

Ψ√
z̄ =

(
r

1 + exp(z + z̄)

)1/2

exp
(
z + z̄

4

)
ψ
√

z.

This may seem like an unusual parametrization for coor-
dinates and fermions on the sphere, but the geometry is
completely hidden in the tangential derivative and poten-
tial terms, while in the remaining terms it is reduced to
the universal factor

√
ezz̄ez̄z =

r

1 + exp(z + z̄)
exp

(
z + z̄

2

)
.

7 Conclusion

The primary objective of the present paper was to estab-
lish the connection between mathematical formalisms to
describe fermions in low-dimensional systems. In a more
conventional spinor framework, we can choose to either
work with the reducible set of γ-matrices induced from
the ambient Minkowski space, or we can work with irre-
ducible sets using a zweibein on the surface. Finally, we
observed that spinors can always be mapped into half-
differentials through multiplication with square roots of
zweibein components.

An examination of the mapping at the Lagrangian
level revealed the specific advantages and disadvantages
of half-order differentials compared to the equivalent, but
much more common spinor formalism. The mapping from
spinors to half-differentials eliminates geometry factors
in derivatives and potential terms parallel to the two-
dimensional space, and leaves only a universal geome-
try factor

√
ezz̄ez̄z or √

e−+e+− for mass and orthogo-
nal derivative terms. In particular, the mapping gauges
away spin connection terms in equations of motion for
low-dimensional fermions, at the expense of the local mass
term and the position dependent factor in front of orthog-
onal derivative terms.

The use of half-order differentials is not limited to
isothermal coordinates in two dimensions, but in other
parametrizations utilizes anholonomic bases of tangent
vectors, which would usually be avoided. Therefore half-
differentials lend themselves naturally to general investi-
gations of fermions in low-dimensional systems, because
generic investigations of two-dimensional manifolds (like

e.g. the general dynamics of string world sheets) usually
rely on isothermal coordinates. For investigations within
a given background geometry, the choice of preference be-
tween spinors or half-differentials will depend on how easy
isothermal parameters can be found.

This work was supported in part by NSERC Canada. I would
like to thank the referee for pointing out the possible connec-
tion to bosonization of low-dimensional fermions.

Appendix: the covariantized conformal field
formalism in two dimensions

We explain the covariantized conformal field formalism
in the Euclidean framework. It works in a similar vein
in the Minkowski domain, with the complex coordinates
z = x+ iy replaced by light cone coordinates ξ± = σ ± τ
[21].

The conformal gauge conditions gxx = gyy, gxy = 0
read in complex coordinates

gzz = gz̄z̄
∗ = 0. (52)

If z, z̄ are complex conformal parameters such that the
conformal gauge conditions (52) are fulfilled, coordinate
changes which preserve conformal gauge are limited to
conformal transformations

z → z′(z), z̄ → z̄′(z̄), (53)

except for possible reflections z → z′(z̄), which we will
exclude in the following. The factorization (53) of the two-
dimensional diffeomorphism group into effectively one-di-
mensional transformations is necessary for the consistency
of the definition of fields of conformal weight (h, h̄) with
the transformation law

Ψ(z, z̄) → Ψ ′(z′, z̄′) = Ψ(z, z̄)
(
dz′

dz

)−h (
dz̄′

dz̄

)−h̄

, (54)

see e.g. [20].
For the generalization of equation (54) beyond the

realm of conformal gauge fixing, assume now that z is
any complex coordinate on the surface S, not necessarily
satisfying the conformal gauge conditions. The Beltrami
parameters are then defined through

µz̄
z =

gz̄z̄

gzz̄ +
√
gzz̄

2 − gzzgz̄z̄

=
gzz̄ −

√
gzz̄

2 − gzzgz̄z̄

gzz
= µz

z̄∗

gzz

gzz̄
=

2µz
z̄

1 + µz
z̄µz̄

z
,

i.e. the metric can be written in terms of gzz̄ and the
Beltrami parameters,

ds2 =
2gzz̄

1 + µz
z̄µz̄

z
|dz + µz̄

zdz̄|2.
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The Beltrami parameters satisfy |µz̄
z| < 1 and trans-

form non-linearly under orientation preserving coordinate
changes

z → u(z, z̄), ∂zu · ∂z̄ū > ∂z ū · ∂z̄u, (55)

µū
u =

∂ūz + µz̄
z∂ūz̄

∂uz + µz̄
z∂uz̄

=
µz̄

z∂zu− ∂z̄u

∂z̄ ū− µz̄
z∂z ū

. (56)

Equation (56) implies in particular

∂ū − µū
u∂u = (∂ūz̄ − µū

u∂uz̄) (∂z̄ − µz̄
z∂z) , (57)

i.e. there exist derivative operators

δz = ∂z − µz
z̄∂z̄, δz̄ = ∂z̄ − µz̄

z∂z (58)

which transform simply with a factor under the general
coordinate transformation (55), and we have the compo-
sition law under z, z̄ → u, ū→ w, w̄

∂z̄w̄ − µz̄
z∂zw̄ = (∂z̄ū− µz̄

z∂z ū) (∂ūw̄ − µū
u∂uw̄) .

Therefore we can consistently generalize the defini-
tion (54) to define a conformal field of weight (h, h̄)
through the transformation law Ψ(z, z̄) → Ψ ′(u, ū) with

Ψ ′(u, ū) = Ψ(z, z̄)
(
∂zu− µz

z̄∂z̄u
)−h (∂z̄ū− µz̄

z∂zū)−h̄

= Ψ(z, z̄)
(
∂uz − µu

ū∂ūz
)h (∂ūz̄ − µū

u∂uz̄)
h̄
.
(59)

The 1-forms dual to the derivative operators (58) are

δz =
dz + µz̄

zdz̄

1 − µz
z̄µz̄

z
(60)

and its conjugate, and we have

dz∂z + dz̄∂z̄ = δzδz + δz̄δz̄ ,

and the factorized transformation properties

δu = δzδzu, δū = δz̄δz̄ū.

In a general coordinate frame, we can think of fields of
conformal weight (h, h̄) as invariant objects with local rep-
resentations Ψ(z, z̄)(δz)h(δz̄)h̄.

The relevance of Beltrami parameters in two-di-
mensional field theory was noticed for the first time by
Baulieu and Bellon [24]. The bases (58) and (60) and the

definition (59) of the covariant conformal fields were in-
troduced in [15].
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